Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

## Daniel E. Lynch, ${ }^{\text {a }}$ * Ian McClenaghan ${ }^{\text {b }} \boldsymbol{+}$ and Mark E. Light ${ }^{\text {c }}$

${ }^{\text {a }}$ School of Natural and Environmental Sciences, Coventry University, Coventry CV1 5FB, England, ${ }^{\mathbf{b}}$ Spa Contract Synthesis, School of Natural and Environmental Sciences, Coventry University, Coventry CV1 5FB, England, and ${ }^{\text {c }}$ Department of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England
† E-mail: 106355.1670@CompuServe.com.
Correspondence e-mail:
apx106@coventry.ac.uk

## Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
$R$ factor $=0.044$
$w R$ factor $=0.109$
Data-to-parameter ratio $=11.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

## 2-(4-Pyridyl)pyrrolo[3,2-h]quinoline

The structure of the title compound, $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{~N}_{6}$, comprises two unique molecules that associate via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions to form a single convoluted hydrogen-bonded polymer chain. The dihedral angles between the indole rings and the substituted pyridyl rings are 13.43 (14) and 22.34 (12) Å.

## Experimental

The title compound, (I), was prepared by Spa Contract Synthesis. Crystals of (I) were grown from an ethanol solution.

(I)

## Crystal data

$\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{~N}_{6}$
$M_{r}=490.56$
Monoclinic, $P 2_{1} / n$
$a=19.3539$ (8) A
$b=6.8609$ (3) $\AA$
$c=19.3579$ (8) A
$\beta=112.325(2)^{\circ}$
$V=2377.77(17) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.370 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 8137 \\
& \quad \text { reflections } \\
& \theta=2.9-30.5^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.28 \times 0.12 \times 0.04 \mathrm{~mm}
\end{aligned}
$$

## Data collection

Enraf-Nonius KappaCCD area
detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.977, T_{\text {max }}=0.997$
11617 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.109$
$S=0.89$
4179 reflections
353 parameters
H atoms treated by a mixture of independent and constrained refinement

4179 independent reflections
3199 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-22 \rightarrow 22$
$k=-8 \rightarrow 8$
$l=-23 \rightarrow 21$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0672 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.22 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}$
Extinction correction: SHELXL
Extinction coefficient: 0.0087 (13)

Received 27 November 2000 Accepted 4 December 2000 Online 14 December 2000


Figure 1
The mlecular configuration and atom-numbering scheme for (I), showing $30 \%$ probability ellipsoids.

Table 1
Hydrogen-bonding geometry $\left({ }^{\circ},{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :---: |
| $\mathrm{~N} 1 A-\mathrm{H} 1 A \cdots \mathrm{~N} 14 B$ | $0.92(3)$ | $2.18(3)$ | $3.100(3)$ | $173(3)$ |
| $\mathrm{N} 1 B-\mathrm{H} 1 B \cdots \mathrm{~N} 14 A^{\mathrm{i}}$ | $0.87(3)$ | $2.12(3)$ | $2.982(3)$ | $171(3)$ |
| $\mathrm{C} 18 A-\mathrm{H} 18 A \cdots \mathrm{~N} 14 B$ | 0.95 | 2.61 | $3.376(3)$ | 138 |
| $\mathrm{C} 18 B-\mathrm{H} 18 B \cdots \mathrm{~N} 14 A^{\mathrm{i}}$ | 0.95 | 2.57 | $3.350(3)$ | 139 |
| $\mathrm{C} 19 B-\mathrm{H} 19 B \cdots \mathrm{~N} 11 A$ | 0.95 | 2.55 | $3.289(4)$ | 135 |

Symmetry code: (i) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$.

All H atoms were included in the refinement at calculated positions as riding models, with $\mathrm{C}-\mathrm{H}$ set to $0.95 \AA$, except for the indole NH group, which was located on difference syntheses and for which both positional and displacement parameters were refined. The unit cell for (I) was initially determined as orthorhombic $\mathrm{C}[a=$ 21.5564 (8), $b=32.161$ (1), $c=6.8627$ (4) $\AA$ ], but it was not possible to obtain a solution in this setting. The structure was eventually solved as primitive monoclinic in $P 2_{1} / n$. However, the refinement was poor, $R 1$ was around $26 \%$ and the ellipsoids were unreasonable. It was noted that $a$ and $c$ were approximately equal in length and the structure was refined as a pseudo-merohedral twin (twin law: 001, 010,100 ). This resulted in a final $R 1$ value of $4.4 \%$, sensible ellipsoids and a twin component of 0.46 (1).

Data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$ and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC National Crystallography Service (Southampton).

## References

Blessing, R. H. (1995). Acta Cryst. A51, 33-37.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

